Simulation of sedimentary rock deformation: Lab-scale model calibration and parameterization
نویسندگان
چکیده
[1] Understanding the mechanical behavior of rock is critical for researchers and decision-makers in fields from petroleum recovery to hazardous waste disposal. Traditional continuum-based numerical models are hampered by inadequate constitutive relationships governing fracture initiation and growth. To overcome limits associated with continuum models we employed a discrete model based on the fundamental laws of contact physics to calibrate triaxial tests. Results from simulations of triaxial compression tests on a suite of sedimentary rocks indicate that the basic physics of rock behavior are clearly captured. Evidence for this conclusion lie in the fact that one set of model parameters describes rock behavior at many confining pressures. The use of both inelastic and elastic parameters for comparison yields insight concerning the uniqueness of these models. These tests will facilitate development and calibration of larger scale discrete element models, which may be applied to a wide range of geological problems.
منابع مشابه
Physical Model Test and Numerical Simulation Study of Deformation Mechanism of Wall Rock on Open Pit to Underground Mining (RESEARCH NOTE)
This paper is based on the open pit to underground mining practice of Daye Iron Mine. The influence mechanism between high-steep slope and non-pillar sublevel caving method is studied by using physical model test. Firstly, engineering geological properties of the choosing typical research section is analysed and generalized. Secondly, the system of open pit to underground mining is developing a...
متن کاملWorkability study in near-pritectic Sn-5%Sb lead-free solder alloy processed by severe plastic deformation
Prediction of the deformation characteristics is an important step to understand the workability of alloys during imposing large strains. In this research, severe plastic deformation of Sn-5Sb solder alloy was carried out under different t deformation conditions, including the temperature range of 298, 330, 36, 400 K and die designs. The current study applies an experimentally validated finite ...
متن کاملLab and Field Scale Modeling of Near Miscible CO2 Injection in Different Porous Mediums
The main purpose of this investigation is to study the effect of near miscible CO2 injection in different porous mediums on both lab and field scales. This effect can be traced by the change of two-phase gas-oil relative permeability curves. In this work, the experiments have been performed on three rock types (i.e. sandstone, dolomite, and artificial fractured sandstone) based on an incrementa...
متن کاملA model for estimation of stress-dependent deformation modulus of rock mass
Deformation modulus of rock mass has a significant role in the support design of an underground excavation. It is determined by expensive in-situ tests or by empirical models. Existing models for estimation of deformation modulus do not consider its stress dependence. Herein, data from several sources is used to develop a stress- (depth-) dependent relation for estimation of deformation modulus...
متن کاملThin‐skinned deformation of sedimentary rocks in Valles Marineris, Mars
[1] Deformation of sedimentary rocks is widespread within Valles Marineris, characterized by both plastic and brittle deformation identified in Candor, Melas, and Ius Chasmata. We identified four deformation styles using HiRISE and CTX images: kilometer‐scale convolute folds, detached slabs, folded strata, and pull‐apart structures. Convolute folds are detached rounded slabs of material with al...
متن کامل